Statistical mechanics of nonlinear wave equations (4): Cubic Schrödinger

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations

This paper addresses the construction of nonlinear integro-differential artificial boundary conditions for one-dimensional nonlinear cubic Schrödinger equations. Several ways of designing such conditions are provided and a theoretical classification of their accuracy is given. Semi-discrete time schemes based on the method developed by Durán and Sanz-Serna [IMA J. Numer. Anal. 20 (2) (2000), pp...

متن کامل

Of Nonlinear Schrödinger Equations

The authors suggest a new powerful tool for solving group classification problems, that is applied to obtaining the complete group classification in the class of nonlinear Schrödinger equations of the form iψt +∆ψ + F (ψ,ψ ∗) = 0.

متن کامل

On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations

We give an error analysis of Strang-type splitting integrators for nonlinear Schrödinger equations. For Schrödinger-Poisson equations with an H4-regular solution, a first-order error bound in the H1 norm is shown and used to derive a second-order error bound in the L2 norm. For the cubic Schrödinger equation with an H4-regular solution, first-order convergence in the H2 norm is used to obtain s...

متن کامل

. A P ] 4 N ov 2 00 3 ILL - POSEDNESS FOR NONLINEAR SCHRÖDINGER AND WAVE EQUATIONS

The nonlinear wave and Schrödinger equations on R d , with general power non-linearity and with both the focusing and defocusing signs, are proved to be ill-posed in the Sobolev space H s whenever the exponent s is lower than that predicted by scaling or Galilean invariances, or when the regularity is too low to support distributional solutions. This extends previous work [7] of the authors, wh...

متن کامل

Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1995

ISSN: 0010-3616,1432-0916

DOI: 10.1007/bf02101661